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ABSTRACT

A high resolution finite element method for the solution of problems involving high
speed compressible flows is presented. The method uses the concepts of flux-corrected
transport and is presented in a form which is suitable for implementation on completely
unstructured triangular or tetrahedral meshes. Transient and steady state examples
are solved to illustrate the performance of the algorithm.
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Here p. p. ¢. T and k denote the density. pressure. specitic total energy. temperature

and thermal conductivity of the fluid respectively and u, is the component of the Huid “
velocity in the direction r, of a Cartesian coordinate svstem. The equation set is

completed by the addition of the state equations
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which are valid for a perfect gas. where ~ is the ratio of the specific heats and ¢, is the
specific heat at constant volume. The components of the viscous stress tensor a,, are
given by
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and it is assumed that A and u are related by

THE FLOW SOLVER: FEM-FCT
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As stated above. high resolution, monotonicity preserving schemes must be devel-
oped in order to be able ro simulate the strong nonlinear discontinuities present in the
flows under consideration. Although the pertinent literature abounes with high reso-
Iution schemes {1-6]. only Zalesak's generalization [T} of the 1-D FC! schemes of Boris
and Book {3-10] can be considered a truly multidimensional high resolution scheme. We
remark here that the use of unstructured grids requires such truly multidimensional
schemes. as the lack of lines or planes in the mesh inhibits the use of operator splitting.
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Erlebacher {11]. and Parrot and Christie [12] first analvzed FCT schemes in the
context of finite element methods. We develop their ideas further to include the con-
sistent mass. which vields high temporal accuraey. and to systems of equations.

The Concept of Flux-Corrected Transport (FCTj

We consider a set of conservation laws given by a system of partial differential equa-
tions of the form given in eqn.(1). and assume that the advective fluxes F* = F2([")
play a dominant role over the viscous fluxes F' = F"(l'}. For flows described by :
eqn.(1). discontinuities in the variables may arise (e.g. shocks or contact discontinu-
ities). Any numerical scheme of order higher than one will produce overshoots or ripples
at such discontinuities (the so-called ‘Godunov theorem’ {15]). Very often. particularly
for mildly nonlinear systems. these overshoots can be tolerated. However. for the class
of problems studied here. overshoots will eventually lead to numerical instability. and
wiil therefore have to be suppressed.




The idea behind FCT is to combine a high-order scheme with a low-order scheme
in such a way that in regions where the variables under consideration vary smoothly
(so that a Taylor expansion makes sense) the high-order scheme is employed. whereas
in those regions where the variables varv abruptly the schemes are combined. in a
conservative manner. in an attempt to ensure a monotonic solution.

The temporal discretization of eqn.(1) yields

U™t =0 4+ AU. (6)

where Al is the increment of the unknowns obtained for a given scheme at time
t = t*. Our aim is to obtain a Al of as high an order as possible without introducing
overshoots. To this end. we re-write eqn.(6) as:

U =U" + AU + (AU - AUY. @

or

Here ALU® and AU denote the increments obtained by some high- and low-order scheme
respectively, whereas I’/ is the monotone. ripple-free solution at time t = t**! of the
low-order scheme. The idea behind FCT is to limit the second term on the right-hand
side of eqn.(8):

UrH = U Lim(AUY - AU, (9)
in such a way that no new over/undershoots are created.

It is at this point that a further constraint, given by the conservation law (1)
itself must be taken into account: strict conservation on the discrete level should be
maintained. The simplest way to guarantee this for node-centered schemes (and we
will only consider those here) is by constructing schemes for which the sum of the
contributions of each individual element (cell) to its surrounding nodes vanishes (‘all
that comes in goes out’). This means that the limiting process (eqn.(9)) will have to
be carried out in the elements (cells).

Algorithmic Implementation

We can now define FCT in a quantitative way. We follow Zalesak's exposition [7}.
but modify the term ‘flux’ by ‘element contribution to a node’. Those more familiar
with finite volume or finite difference schemes should replace ‘element’ by ‘cell’ in what
follows.

FCT consists of the following six algorithmic steps:

1) Compute LEC: the "low-order element contribution’ from some low-order scheme
guaranteed to give monotonic results for the problem at hand:
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2) Compute HEC: the
scheme;

‘high-order element contribution’. given by some high-order
3) Define AEC: the ‘antidiffusive element contributions’ :

AEC = HEC - LEC
4) Compute the updated low-order solution :

Ul=0"+ Z LEC = U™ + AU (10)
el

5) Limit or ‘correct’ the AEC so that ["n+!

as computed in step 6 below is free of
extrema not also found in U/ or /™ -

AEC* = Cel~ AEC, 0<Cel< I: (11)

6) Apply the limited AEC -
vttt =l 4 Z AECe, (12)
el

The Limiting Procedure

Obviously, the whole approach
We define the following quantities:

a) Pf:

depends critically on the all-important step 5 above.

the sum of all positive (negative) antidiffusive element contributions to node I

max
PE= 3 {merdo.akCa)

el

b) Qf: the maximum ( minimum) increment (decrement) node I is allowed to achieve
in step 6 above

Q?: = UI::: _ Lrl

where U ,:"‘ (defined below) represents the maximum (minimum) value the un-
known U at node I is allowed to achieve in step 6 above.

c) R%:

Rt .= I min(1.Q¥/P*) if P+ 50 p- <o
- 0 if Pr=p '

Now take, for each element:

4

*
¥
s

N7 L PR I
PURE U TR e

P




‘!' 'I. ....‘

+
Cel = min(element nodes) { g_ z; :ggz g (13)
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Finally. we obtain ;™" in three steps :
a) maximum (minimum) nodal U of U'™ and U/ :
e _ [maz I yrn
Uy = {min}(UIa ).
b) maximum (minimum) nodal value of element :

= {"“7’}((11.U;,,....U5) :

min

where A. B, ..., C represent the nodes of element el.

c¢) maximum (minimum) U of all elements surrounding node I :
Urs = {"“,"}(U;, Us,..Us) .

where 1.2,..., m represent the elements surrounding node I.

This completes the description of the limiting procedure. Up to this point we have
been completely general in our description. so that eqns.(6)-(13) may be applied to
any FEM-FCT scheme. In what follows. we restrict the exposition to the finite element
schemes employed in the present work, describing the high and low-order schemes used.

The High-Order Scheme: Consistent-Mass Tavlor Galerkin

As the high-order scheme. we employ a two-step form [18-20] of the one-step Taylor-

Galerkin schemes described in [16,17). These schemes belong to the Lax-Wendroff

class, and could be substituted by any other high-order scheme which appears more

| convenient, including implicit schemes. Given the system of equations (1), we advance
| the solution from t" to t"*! = ¢* 4+ At as follows:

a) First step (advective predictor):

At OF*|"
AR (14)
J
b) Second step :
an+3 OFr ™
AU = U™ - U™ = ~At =2 + At —L (13)
Or, dz;
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The spatial discretization of (14) and (15) is performed via the classic Galerkin
weighted residual method [18-20], using linear elements, i.e. 3-noded triangles in 2-D
and 4-noded tetrahedra in 3-D. For (15) the follewing system of equations is obtained:

Mc -AU™ = R™. (16)

where Mc denotes the consistent mass matrix [18-20]. AL the vector of nodal incre-
ments and R the vector of added element contributions to the nodes. As M¢ possesses
an excellent condition number, eqn.(16) is never solved directly, but iteratively. requir-
ing typically three passes [17]. We recast the converged solution of eqn.(16) into the
following form, which will be of use later on :

Mp-AU* = R+ (Mg - Mc)- AUM. (17)

Here M denotes the diagonal, lumped mass-matrix (see [17]).

The requirement placed on the low-order scheme in any FCT-method is mono-
tonicity. The low-order scheme must not produce any artificial, or numerical, ‘ripples’
or ‘wiggles’. It is clear that the better the low-order scheme, the easier the resulting
task of limiting will be. Therefore an obvious candidate for the low-order scheme is
Godunov’s method [15]. However, this scheme would be relatively expensive, and its
extension to unstructured grids remains unclear.

We have so far added ‘mass-diffusion’ to the lumped-mass Taylor-Galerkin scheme
in the context of FEM-FCT [13,14]. This simplest and least expensive form of diffusion
is obtained by subtracting the lumped mass-matrix from the consistent mass-matrix
for linear elements:

DIFF =cq-(Mc - Mp)-U". (18)
The element matrix thus obtained for 2-D triangles is of the form
Vol 2 ~-1-1
ca-(Mc-Mp)a=- 2240 -1 21 (19)
-1-1 2

Observe that we cannot simply add this diffusion to the high-order scheme in order
to obtain monotonic results, as a multipoint-coupling of the right-hand side occurs due
to the consistent mass-matrix employed in the high-order scheme . The imposition of
monotonicity can nevertheless be achieved by using a lumped mass-matrix instead. As
the terms originating from the discretization of the fluxes F* in (1) are the same as in
{15), the low-order scheme is given by

My -AU'= R+ DIFF. (20)

|
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Resulting Antidiffusive Element Contributions

Subtracting (20) from (17) yields the equation

My (AU = AUY=R+ (Mg - Mc)-AUY - R—- DIFF. (21)
or. using eqn.(18)

AUP —AU' = M7 (Mp — M) - (eg- U™ + AUM). (22)

Note that all terms arising from the discretization of the fluxes F* in (1),(15).(20)
have now disappeared. This is of particular importance if the antidiffusive element
contributions must be recomputed (small core memory machines), and real gas effects

are taken into account (table look-up times are considerable) or real viscosity effects
have to be included (Navier-Stokes equations).

iti o stems of ations

The results available in the literature {8-10] and our own experience [13,14] have
shown that with FCT results of excellent quality can be obtained for a single PDE.
However, when trying to extend the limiting process to systems of PDEs. no imme-
diately obvious or natural limiting procedure becomes apparent. Otviously, for 1-D
problems one could advect each simple wave system separately, and then assemble the
solution at the new time step. However. for multidimensional problems such a splitting
is not possible, as the acoustic waves are circular. FDM-FCT-codes used for production
runs [21,22] have so far limited each equation separately, invoking operator-splitting
arguments. This approach does not always give very good results, as may be seen from
Sod’s comparison of schemes for the Riemann problem [23], and has been a point of
continuing criticism by those who prefer to use the more costly Riemann-solver-based,
essentially one-dimensional TVD-schemes [1-6]. It would therefore appear as attrac-
tive to introduce ‘system character’ for the li

~ .1 .

miter by combining the limiters for all
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some undershoots for very strong shocks are present. This option is currently our
preferred choice for transient problems.

iii) Use of the minimum of the limiters obtained for the density and the pressure
(Cet = min(Cealdensity), Co(pressure))) : this again produces acceptable results.
particularly for steady-state problems.

NUMERICAL EXAMPLES

a) Shock over an indentation: The first problem considered simulates the transient
flowfield produced by the interaction of a strong shock with an indentation in the
ground. For this case, the shock Mach number was set to M, = 25, which corresponds
to a pressure-jump ratio of about 1:100. During the transient. pressure ratios as high
as 1:1000 result. The problem statement. solution domain, spatial discretization and
solutions obtained are shown in Figs.1a-1e. Note that an adaptive refinement scheme for
transient problems [{26] was used to reduce the overall storage and CPU requirements.

As the shock travels over the indentation, it produces a bow shock and a rar-
efaction (Figs.la.1b). Then. it collides with the right wall of the indentation and
bounces back. producing several shock/shock and shock/contact discontinuity interac-
tions (Figs.1c,1d). Observe the level of physically relevant detail that the scheme is
able to reproduce, e.g. the triple shock produced at T=0.12 (Figs.1d,le). The veloc-
ity pattern generated by these interactions has been magnified in Fig.le. and shows a
large residual vortex. as well as the different shock fronts and other discontinuities. We
remark that at all times the shocks are captured within 2 to 3 elements.

In the present case, we used as limiter for all equations the minimum of the limiters
computed for the continuity and energy equations. It is found, that for the strong shocks
present in such flowfields, even a pressure-undershoot of 0.1% will lead to negative
pressures. Therefore, the pressure is additionally limited artificially in order to be
positive (albeit small) at all times.

b) Steady supersonic flow past a circular cylinder: This problem involves inviscid
Mach 3 flow past a circular cylinder. The solution has been obtained by relaxing,
with local timesteps, the transient solution towards the final steady-state. During this
iteration process, the grid was adapted three times to the solution by using an adap-
tive mesh regeneration technique [27]. The final grid is shown in Fig.2a. A detail of
the pressure coefficient distribution is shown in Fig.2b. and the variation of pressure
coefficient along the centre line and over the cylinder surface is given in Fig.2c.

c) Shock-bubble interaction; This problem is included here to demonstrate a new ax-
isymmetric capability, and also to show that not only geometrically complex domains.
but also physically complex problems can be handled economically by the methodolo-
gies developed. Initially, a weak shock (M, = 1.29), coming from the left in Fig.3a.
travels into a bubble of heavier material. In the present case, the outer medium was
assumed to be air, while the bubble was assumed to consist of freon. Due to the higher
density of freon, the shock speed inside the bubble decreases (Fig.3b). While the cuter
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shock bends over. the inner shock focuses at the right end of the bubble. producing a
significant overpressure (Fig.3c). and initiating a small. circular blast wave (Fig.3d).

d) Steadv supersonic flow over a flat plate: The fourth problem considered is the
steady state solution of supersonic viscous flow over a flat plate. The flow condi-
tions correspond identically to one of the cases considered by Carter {28], using a finite
difference scheme. The free stream Mach number is 3 and the Reynolds number based
on the plate length is 1006. The temperature of the plate is assumed constant. The
Sutherland viscosity law (see. e.g. Schlichting [29]) is used and the initial conditions
are chosen to be appropriate to the case of a flat plate impulsively inserted into the free
stream. The mesh used is displaved in Fig.4a, and the general features of the solution
can be appreciated in the density contour plots shown in Fig.4b. The variation of the
computed wall pressure distribution is given in Fig.4c.

CONCLUSIONS

It has been demonstrated how unstructured grids and high resolution schemes
may be combined, yielding FEM-FCT. The numerical examples indicate that a high
accuracy can be obtained economically for problems involving complex domains and/or
adaptive mesh refinement. Furthermore, the ‘equation-splitting’ employed in classic
FCT-codes [21.22] has been extended by coupling or ‘synchronizing’ the limiters of all
the equations involved, without taking recourse to more costly Riemann-solver-based
monotone schemes.

Extensions of the present work are under investigation and involve the development
of better limiters for systems of equations in the context of FEM-FCT, the extension of
FEM-FCT to implicit or semi-implicit time-stepping schemes [31], and the combination
of FEM-FCT with unstructured multigrid methods [32] for the rapid solution of steady
state problems.
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Figure 2: Steady supersonic flow past a cylinder

c) Variation of the pressure coefficient along the center line and over
the cylinder surface
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(a) Mesh, (b) Density contours, (c) Pressure
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